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Correlation Inequalities for Antiferromagnets 
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We prove several correlation inequalities for a class of antiferromagnets 
with pair interaction and arbitrary fields. To do this we use the Ginibre- 
Percus method of double variables. 

KEY W O R D S  : Correlation inequalities; antiferromagnetic systems; arbi- 
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1. I N T R O D U C T I O N  

Correlation inequalities play an important role in rigorous statistical mechan- 
ics. Therefore it would be of some interest to be able to find more of them. 
Almost all known inequalities are valid only in the ferromagnetic region, 
the only exception being the F K G  inequalities, via the isomorphism between 
ferromagnets with a staggered external field and antiferromagnets with a 
constant external field. 

In this paper we describe some new inequalities of the Griffiths type for 
lattice antiferromagnetic systems with arbitrary spins. These inequalities will 
be derived directly for antiferromagnetic systems. They also yield by judicious 
flippings of spins on suitable sublattices some new inequalities for ferro- 
magnetic systems. In some cases, however, e.g., in some examples described 
below, they are consequences of the F K G  inequalities. 

The following is the simplest example of  our results. Consider an anti- 
ferromagnet with pair translation-invariant interaction and constant mag- 
netic field. Also choose some "chessboard"  configuration, which is equal 
to any real constant on "white squares" and to any smaller constant on 
"black squares." This staggered configuration is defined on the whole lattice 
and plays the role of the boundary conditions. Then in the infinite-volume 
limit the expectation of the difference between any "whi t e"  spin and "b l ack"  
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spin is positive. An interesting point here is that the result, contrary to the 
usual feeling, fails in general for a finite volume. 

This inequality is a by-product of the attempt to prove the following 
conjecture: Consider the above-mentioned expectation of the difference 
between "white-square" spin and "black-square" spin as a function of 
external field. It increases monotonically on some half-line and decreases 
monotonically on its complement (at least for spin 1 [2). 

The GHS inequality indicates the conjecture to be true in some neigh- 
borhood near the maximum of our function if the interaction is of a special 
form and the volume is finite. However, this neighborhood depends on the 
size of the volume and goes to zero as the volume goes to infinity. 

2. N O T A T I O N S  A N D  RESULTS 

Let 7/~ be a v-dimensional cubic lattice and Le c Z' be any sublattice 
of index two; Lo = Z~\L~ is the coset (here e denotes even and o odd). For 
i G 7/~ let 

0, i G L~, 
P ( i ) =  1, i~Lo  

(the parity of i), and let p(A) = ~ , 4  p(i) for A c 71 ~ and finite. 
For  any i ~ Z ~ let a~ e ~:  denote the value of the spin situated at point i. 

The joint distribution of  the variables a^ = {~; i ~ A, A c Z ~ and finite) is 
given by the measure 

dPA,a = Z -  :(A, 5) exp{-  HA(~AI~)} d~A (I) 

where ~: 77--~ A: is some function or configuration, which is called the 
boundary condition; /~A = @~^ t~, tz~ = t~, tz is any symmetric measure on 
R~; the Hamiltonian HA is given by 

i,jGA i@A i~A,j~A 

and the factor Z-1 normalizes the measure (1). [In the following we suppose 
the convergence of  everything we necd (this is a condition on/~). In par- 
ticular, the factor Z(A, ~) exists.] 

The interaction J~j is supposed to be antiferromagnetic, namely 

(-1)P("'mJij i> 0 (3) 

Now, let (7?)' be an isomorphic copy of our lattice. We shall use the 
same letters for corresponding points in ?7 ~ and (7/~)'; other objects on (Zg' 
will be denoted by a prime. So we have some antiferromagnetic interaction 
J~'j, external field h~', and boundary condition ~'; the measure td is equal to t~- 
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To state our  first result let r eLo' and consider the family ~rk,+~ = 
{a~', i c A' + r}. Then we have the following. 

Theorem 1, If 
1. J~+~.j+~ = ~j  

2. ( -1 ) ' " ' (h ,  - he+0 >/0 

3. (-1)~'(~ - ~'+~) >1 0 

then 

( - IF(A) (  I-~ (~t - cr~+*)N~ >10 
\ t ~ A = A  /A,A'+z 

Here ( ' " )A,A '+~ means integration with respect to the measure 

PA., | P'~,+,.r 

Note. This theorem is similar to the Percus inequality; see 
Sylvester. m 

To obtain the corresponding theorem for ferromagnetic systems, we 
flip all spins in the sublattices Lo and Le. Condition (2), e.g., becomes 

(hi - hi'l+O >>- 0 

It  is immediate that we can replace T~ in the conclusions of Theorem 1 by 
any monotone function F~ of T~. If  A = di~ is a one-point set, then we get 
a special case of the F K G  Holley inequality. If  A = {i,j}, then the corre- 
sponding inequality can also be derived by applying the F K G  Holley in- 
equality twice. Furthermore, if the functions N are positive, we get (see 
proof  of  Corollary 2) 

(~_.AI~A F~(al) -~UA F~(~+O~.A'+. > 0 
which also is a special case of  the F K G  Holley inequality. 

In the following corollary we need the existence of  the infinite-volume 
limit and its independence from the sequence of  finite boxes. For  the case 
at = + 1 it is an easy consequence of the F K G  inequalities, as was found 
by Lebowitz and Martin-L6f. ~2) Their method also covers the case of  measures 
/z with compact support. However, the case of  arbitrary/z is not so simple, 
and Lebowitz and Presutti c3) found sufficient conditions on /z and the Jtj 
under which the desired limit exists. In what follows, we simply suppose 
this. 
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Corollary 1. In  addit ion to Theo rem 1, suppose 

J,j = J ( i  - j )  

fh~ ,  i ~ L~ 
h, = he, i ~ Lo and he >1 he 

cry, i ~ Le 

f* = fro, i e Lo and fe i> fo 

(4) 

(5) 

Let ( . . . )  be the limiting measure  Pa.~ as A ~ 2 ' .  Then 

( ~ )  1> (%-) for  i ~ L e ,  j ~ L o  

C o r o l l a r y  2. If, in addition, supp t~ E [ -  1, 1], then 

(~,) - (~J) >t (1 /v /2 l ) l (~ ,  =) - ("P)I  (6) 

Note .  The idea of  (6) is similar to that  o f  Lebowitz.  (4~'2 
N o w  let P c A, be a hyperplane,  and let a tilde superscript  denote the 

corresponding reflection. Suppose that  (2~ ~) ~ = Y', Le ~ = Lo, and A ~ = A. 
Then  we have:  

T h e o r e m  2. Let  the ant i ferromagnet ic  interaction J,j be rotat ion-  
invariant  [J~j = J([i  - j ])] ,  h~ ~> h~, f~ t> f~, for  any i E L ~ .  Then 

C o r o l l a r y  3. Let (4) and (5) hold. Then in the infinite-volume limit 

(a ,e j )  + (a,+~,aj;a) >>, 2(a~at) 

where i, j ,  s ~ Le ; ;~, t e Lo; and vectors j - i, s - j ,  t - s, and ~ are parallel 
to some unit  vector  f rom 2~ ~. 

Note .  The last two statements result f rom the applicat ion of  Hegerfeld 's  
methodCS~ in our  case. 

3. P R O O F S  

The proofs  follow the general approach  of  Ref. 6. 

P r o o f  o f  Theorem  1. The joint  distr ibution of  the family {aA, crk,+,} is 
given by the product  measure:  

Z -  I(A, f ) Z -  l ( a '  + % f ' )  exp{ - HA(aA If)  -- HA, +,(o~" +,If ')} dt~A d/zA" +, 
(7) 

2 Similar inequalities were proven by Lebowitz. ~7~ 
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Let 

x~ = (~, + <+0/~/72, ~, = (<  + ~;+O/V-2 

h, + = (h, + h;+Ol~/~, h , -  = ( - i ) ~ + ( h ~  - h;+OIv~ 

We shall make use of the following identities: 

u v  + u 'v '  = ~[ (u  + u ' ) ( v  + v ' )  + (u  - u ' ) ( v  - v')] 

= �89 + u ' ) ( v  + v ' )  + (u '  - u ) ( , / -  v)] 
= l [ ( u  + u ' ) ( v  + v ' )  - (u  - u ' ) ( v '  - ,,)] 

= l [ ( u  + u ' ) ( v  + v ' )  - (u '  - u ) ( v  - v')] 

The first pair appears in every paper on this subject. Using the second 
pair of identities, we shall be able to eliminate some of the antiferromagnetic 
negativeness in the Hamiltonian. Namely, we have 

- H(xa ,  YAIY, 17) 

i , ]cA  i e A , j ~ A  i e a  

Let H+(xa]2) be the first half of the last sum and H-(ya]~)  be the 
second half. The inequality of Theorem 1 can be rewritten in the form 

= ~ A Y ,  e x p { - H ( x a ,  yal.%y)}dtza(~a)dt*a,+.(%.+O > 0 (8) 
2[Al 

Now, H-(yA[y) is a polynomial in y,, i e A, with nonnegative coefficients, 
according to the hypothesis of the theorem. By expanding the exponent 
exp{-H-(yA])7)}, we find that the left-hand side of (8) becomes a sum of a 
series, with each term given, up to a nonnegative factor, by the integral 

f= 1--[ y~m exp{- H + (xa [ff)} d~a(%) d/za, +,(or),+,), n(i) ~ 77 + (9) 
2IAI ~eA 

But the transformation 
i 

a, -+ ~, +~, ~i +, -+ a, (10) 

leaves unchanged the measure /zA | and the function H+(xA[2"), 
changing the sign of y,. Thus, the integral (9) is equal to zero if n(i) is odd 
for some i E A; otherwise the integrand is nonnegative. QED 
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Corollary 1 follows by observing that l i m A ~  PA,~ = lima~o PA+~,~ 
(see Refs. 2 and 3). 

To prove Corollary 2, consider any function g(a~, ~,+~), which is 
nonnegative (t~a | +0-almost everywhere and invariant under transforma- 
tion (10). It is easy to see that the integral (9) remains nonnegative after 
multiplying the integrand by g. In particular, if supp/~ ~ [ - l ,  l], then the 

functions ( x / ~  + x0 can be taken for g. 

Proo f  o f  Theorem 2. Let 

x, = (~, + ~3/a/-2, y, = (~, - ~ 3 / v ~ ,  i~  A (q L~ 

h, + = (h, + h~)[V~, h , -  = (h, - h O / v ~  , i e L e  

For any s, t e A, s r t ~ g, let {i, j} be the intersection {s, t, ~, T} O Le. Then 

because Jij = J~,y, Jiy = Jij'. Hence 

- H A ( ~ I ~ )  

i,]EAnLe 

+ E  
i~A~Le 

(J,j + J, gx,xj + ~,_ (J,j + ],3x,xj 
~AnLe ,J~AnLe  

h~+xr + �89 E (J~J - Jr 
~,j~AnLe 

iEA~Le,]~AnLe i~At~Le i~AnLe 

By definition, J~j - J~y /> O, provided i, j e Le. The remaining part of  the 
proof  coincides with that of Theorem 1. 
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